0.1 Split code for PICs

This text is to be used in conjunction with the tutorial in section 2.5 of the PIC compiler manual. Its
purpose isto provide an example of the process as outlined in the PICC Manual for the creation of split
code. Explanations or further information on certain sections of thistext can be found in the manual.

Please refer to the following C source (and header) files. The processor used as an examplein the PIC
Manual tutorial isthe PIC17C756 - asisthis example. The files that are part of this example include :-

fixed.c code for the fixed internal memory

r_main.c mainreplaceable code for the external memory

r_ext.c replaceable code for external memory

r_ext.h header fileforr _ext.c

runsplit batchfilefor thelinking, XSTRI P & OBJ TOHEX processes

These files are set up to run the PIC compiler found in the standard directory: C: \ HT- Pl C\ . If thisis
not where you compiler is located, you will need to edit these file to specify the location of the library
files used.

Withinfi xed. ¢, acal ismadetothefunctiont wi ce() whichisdefined withinthisfileaswell ascalls
to the library functions st rcpy() and strl en() . The other two functions defined in thisfilei nc()
and dosonet hi ng() are called by the external code. The interrupt service routine defined within this
file, i sr10(), calls an ordinary function defined in the external code placed at a specific address
(4200h) by the linker.

0.1.1 Creating the Obiject Files

As outlined in the PICC Manual’s tutorial, first compile the files to ensure that the program works
correctly and fix any errors. Once this has been completed, we can then create the object files.

This is done for both the internal and external files usind’ti@E driver. Include all the options as
required (for example optimizers). In this example, we are using the MPLAB IDE to run the code, hence
the- Gand- FAKELOCAL options are used to generate source-level debugging information and MPLAB-
specific debugging information, respectively.

PICC -17C756 -C -G - FAKELOCAL fixed.c r_main.c r_ext.c

The next step is creating a file required by the internal code to prevent local variables and parameters
from being overlapped in memory. Notice in fixed.c that the functioreg) andtwi ce() are never

called. If this file were to be linked in the usual way, the parameters and local objects (both these
functions only have parameters in this example) would all be overlapped as the linker would believe that
they are never actually executed. Although nothing in the fixed code calls these functions, code in the
external space may. The file callgrph.as contains the necessary assembler directives to convince the
linker that these functions have been called. You should inclENEALL directive for any functions in

HI-TECH PIC C compiler 15

your fixed code that are only called by the replaceable code. You will need a GLOBAL directive for any
symbol referenced in this file. Compile thisfile using acommand like,

PI CC -17C756 -C call grph. as
0.1.2 Creating the Symbol-Only Object File

The symbol-only object file is to used to supply the location of symbols used in the internal code that
arerequired by the external code.

Thefirst step isto create theinitial linker command file,
PI CC -17C756 - M- _SYM MAP -L-F -L-1 -V fixed.obj callgrph.obj >f _symlnk

The above command produces alinker command file, f _sym | nk, which will be modified to suite our
application. The option - Mproducesamap file, f _sym map, whereasthe- F and - | after the- L linker
option tells the compiler to create a symbol-only object file and ignore any undefined symbols,
respectively. The next step is to modify the generated linker command file. The PICC Manual Section
2.3.5explainshow to modify thelinker file. In thisexample we have modified the output object filename
tobef _sym obj . Removal of the excess lines as well as the HLI NK command at the start is also
required.

Linking the file with the following command produces the f _sym obj object and f _sym map map
files.

HLINK < f_sym | nk

Oninspection of the UNUSED ADDRESSRANGES inthemapfilef _sym nap (thisfileisoverwritten
later, but has been included as f or g_sym map for reference here), we can determine the amount of
RAM that the fixed code requires for all the memory banks. Our example shows that only BANKO is
used. The default memory range available in bank 0 isfrom 1Ch to FFh. (Look at the -ABANKQO linker
option in this file.) The unused BANKO memory extended from 28h to C5h (see the UNUSED
ADDRESS RANGESinthisfile). Thismeansthat the addressrange 1Ch to 27h was used (Ch | ocations)
and from C6h to FFh was used (3Ah locations). The total memory required is 46h locations. We will
now adjust the linker options so that the linker will allocate all the memory at the lower end of the
available bank 0 range from 1Ch to 61h. (1Ch + 46h - 1 = 61h) The upper range of this memory will
then be available for the replaceable code. The memory allocated to the internal codeis changed in the
linker file to reflect this. The new bank 0 memory range available to the linker is specified by the
options:

- ABANKO=001Ch- 0061h

The next step isto localize certain global symbols from the symbol-only object file. The reason for this
is that we want to linker to re-link the code/data associated with these symbols rather than using the
symbols that were defined in the fixed code. Localizing them tells the linker that it cannot use any

16

Split code for PICs

globally defined symbols that it may have seen and that it will have to search for a new definition. For
example, the copy_data routine is already defined by the internal code to initialize variables that that
code uses. But this code will be using the address range applicabl e for the fixed code and does not know
about variables defined elsewhere. To force the linker to link in another copy _dat a routine specific for
the repl aceabl e code we essentially undefine the symbol by localizingit. If there are any routines defined
in the fixed code that you do not want the external code to use then include their name here. You must
then ensure that you provide the definition for the routines in the external code. The XSTRI P utility can
be used as shown.

XSTRIP -start, _exit,intlevelO,intlevell,copy data,clear_ram
copy_bankO0, cl ear _bank0 f_sym obj

0.1.3 Creating the Absolute Obiject File for the Fixed Code

Start by copying the symbol-only linker file and renaming it, in our example it has been copied and
renamed to f _abs. | nk. The - F and - | options are removed. The map, object and symbol files have
been changedtof _abs. map, f _abs. obj andf _abs. sym respectively (i.e. options- M _abs. map -
Of _abs. obj - H+f _abs. sym).

Thisfileisthen used to link the relevant output files.
HLINK < f_abs. I nk
0.1.4 Creating a Modified Run-Time File

As described in the PICC Manual, copy the pi crt 66x. as and sfr. h files from the SOURCES
subdirectory of your distribution. (You can rename the run-time file so that it is not confused with the
standard run-time module - in this case it has been renamed to ext rt . as). Now, within this renamed
run-time file, replace all references to the symbol _nai n to the assembler name of the external main
function. In our example, the main function of the external code hasbeen calledext _mai n() , henceall
referencesto _mai n would be replaced with _ext _mai n.

0.1.5 Creating the Absolute Obiject File for the External Memory

Copy and rename the linker file used for the absolute object file (in our example, thef _abs. | nk has
been copied and renamed to r epl ace. | nk). The output map, object and symboal files are changed to
repl ace. map, repl ace. obj and repl ace. sym respectively (i.e. options - M epl ace. map -
Orepl ace. obj - Htrepl ace. sym).

Astheinternal code only used the RAM in the addresses 001Ch - 0061h, we can allocate the remaining
addresses to the external code using the following linker option.

- ABANKO=0062h- 00FFh
The ROM settings are changed so that only external memory is defined.

PIC Tutorials 17

- ACCDE=4000h- 5FFDh

The ROVDATA class is changed so that it only uses the external memory ROM space of 8000h - BFFFh.
- AROVDATA=8000h- BFFFh

Change the init psect’s address.
- pi nt code=08h, power up=00h, i ni t =4100h, end_i ni t, cl rtxt

(Although this option placest code andpower up at internal locations, there should be nothing placed
within either of these two psects by the external code.) Now, remove internal memory object files and
replace them with the external memory object files. (The files removed fwered. obj ,

cal | grph. obj -replaced by nai n. obj andr _ext. obj) The symbol-only fixed code object file is
added to the listf(sym obj). The modified run-time module is to replace the run-time object, hence,
the reference tpi crt 714. obj is replaced with thextrt . obj file.

Finally, the psectsr 10, which contains the external interrupt, needs to be positioned at the absolute
address of 4200h. The following is added to the linker command.

- pi sr10=4200h

This is then linked to produce the absolute object file for the external memory.
HLI NK < repl ace. | nk

0.1.6 Creating HEX Files

The OBJTCHEX application is used to create HEX files from the absolute object files. The conversions
are as follows.

For the internal code,

OBJTOHEX -1 -16,2 f_abs.obj fixed. hex
For the external code

OBTCHEX -1 -16,2 replace.obj replace. hex
2.5.2.10 Creating COD Files for Debugging

The COD files are used for debugging on some emulators/simulators, e.g. MPLAB. The CROMWELL
utility is used.

CROMAELL -F -M -P17C756 fixed. hex f_abs.symrepl ace. hex replace. sym -ocod

This produces &i xed. cod file only. For this example, the MPLAB IDE was used to run the code. As
the HEX files must be loaded into memory, it is recommended that a copyf okt cod file is made

18

Split code for PICs

inthename of r epl ace. cod so that it does not matter which HEX fileisloaded first, asthe COD files
exist for both HEX files.

0.1.7 Checking Results
Check the following by viewing the map files.

a) Ensure that the addresses of al the fixed code are in internal memory and that the addresses of RAM
symbols defined by the fixed code are within the RAM space allocated.

The PIC17C756's internal memory is from 0Oh - 3FFFh and from the CODE class listing, all the code is
within that range. (In our example, the code is listed in locations 00h-16h, 1EF1h-2011h.

b) Ensure that the addresses all the replaceable code are in external memory and the addresses of RAI
symbols are in the space allocated.

Viewing r epl ace. map shows that the code is placed from address 4000h onwards, which is the
external memory location. Note that all the psects linked into the ROMDATA classste.ongs and

i data_n psects) are placed at address 10000h. Although we specified that the linker place these objects
in the ROM space 8000h-BFFFhAROVDATA=8000h- BFFFh). This is due to the fact that the compiler

can place two data bytes in each ROM word location. The address used to refer to ROM data (as opposet
to code) is a byte address that is twice the corresponding word address.

c) Ensure thatut o and parameters areas for each function are not at the same address, e.g.
?_ext_main is at 0064h an@a_ext _nai n is at 0067h. If a function does not have parameters then
these addresses will be the same.

d) Ensure that functions that are active at the same time andabbweor parameter areas do not
overlap. e.g. Thext _mai n() routine calls the functionsul ti pl y() andstrcat () (in addition to
others). Theaut o and parameter addressesdat _nai n() andmul ti pl y() do not overlap, nor do
the addresses fext _mai n() andstrcat (). However, note th&_mul ti pl y and?_strcat are the
same sincaul tipl y() never callstrcat () and vice versa.

e) Ensure that the values assigned to the entry routine and external ISRs are as specified.

Looking through the epl ace. map file, the_st art and_ext _i sr 10 routines are at 4100h and 4200h
respectively.

f) Ensure that symbols that are shared are have the same value in the map file for both the fixed and
replaceable code.

In our example, this would be the functidesonet hi ng() . The symbol dosonet hi ng is at 005C in
thef _abs. map file as is in the epl ace. nap file. The same can be said about the library calls to
strlien(),strlen(),inc() andtwi ce().

PIC Tutorials 19

g) Notein repl ace. map that some symbols in the Symbol table are defined in a psect called (abs) .
This indicates that the symbol already had a value assigned to it when linking was performed.
Essentially this means that the symbol was defined in the fixed code and was present in the symbol-only
object file that was linked with the replaceable code. Check to ensure that routines or symbols that
should be referenced in the replaceable code are not using any similar definitions in the fixed code.

20

	0.1 Split code for PICs
	0.1.1 Creating the Object Files
	0.1.2 Creating the Symbol-Only Object File
	0.1.3 Creating the Absolute Object File for the Fixed Code
	0.1.4 Creating a Modified Run-Time File
	0.1.5 Creating the Absolute Object File for the External Memory
	0.1.6 Creating HEX Files
	0.1.7 Checking Results

