
 1

orks

hence
AB-

meters

 these
ve that
 in the
ince the
0.1 Split code for PICs
This text is to be used in conjunction with the tutorial in section 2.5 of the PIC compiler manual. Its
purpose is to provide an example of the process as outlined in the PICC Manual for the creation of split
code. Explanations or further information on certain sections of this text can be found in the manual.

Please refer to the following C source (and header) files. The processor used as an example in the PIC
Manual tutorial is the PIC17C756 - as is this example. The files that are part of this example include :-

fixed.c code for the fixed internal memory
r_main.c main replaceable code for the external memory
r_ext.c replaceable code for external memory
r_ext.h header file for r_ext.c
runsplit batch file for the linking, XSTRIP & OBJTOHEX processes

These files are set up to run the PIC compiler found in the standard directory: C:\HT-PIC\. If this is
not where you compiler is located, you will need to edit these file to specify the location of the library
files used.

Within fixed.c, a call is made to the function twice() which is defined within this file as well as calls
to the library functions strcpy() and strlen(). The other two functions defined in this file inc()
and dosomething() are called by the external code. The interrupt service routine defined within this
file, isr10(), calls an ordinary function defined in the external code placed at a specific address
(4200h) by the linker.

0.1.1 Creating the Object Files

As outlined in the PICC Manual’s tutorial, first compile the files to ensure that the program w
correctly and fix any errors. Once this has been completed, we can then create the object files.

This is done for both the internal and external files using the PICC driver. Include all the options as
required (for example optimizers). In this example, we are using the MPLAB IDE to run the code,
the -G and -FAKELOCAL options are used to generate source-level debugging information and MPL
specific debugging information, respectively.

PICC -17C756 -C -G -FAKELOCAL fixed.c r_main.c r_ext.c

The next step is creating a file required by the internal code to prevent local variables and para
from being overlapped in memory. Notice in fixed.c that the functions inc() and twice() are never
called. If this file were to be linked in the usual way, the parameters and local objects (both
functions only have parameters in this example) would all be overlapped as the linker would belie
they are never actually executed. Although nothing in the fixed code calls these functions, code
external space may. The file callgrph.as contains the necessary assembler directives to conv
linker that these functions have been called. You should include a FNCALL directive for any functions in
HI-TECH PIC C compiler 15

 1
 your fixed code that are only called by the replaceable code. You will need a GLOBAL directive for any
symbol referenced in this file. Compile this file using a command like,

PICC -17C756 -C callgrph.as

0.1.2 Creating the Symbol-Only Object File

The symbol-only object file is to used to supply the location of symbols used in the internal code that
are required by the external code.

The first step is to create the initial linker command file,

PICC -17C756 -MF_SYM.MAP -L-F -L-I -V fixed.obj callgrph.obj > f_sym.lnk

The above command produces a linker command file, f_sym.lnk, which will be modified to suite our
application. The option -M produces a map file, f_sym.map, whereas the -F and -I after the -L linker
option tells the compiler to create a symbol-only object file and ignore any undefined symbols,
respectively. The next step is to modify the generated linker command file. The PICC Manual Section
2.3.5 explains how to modify the linker file. In this example we have modified the output object filename
to be f_sym.obj. Removal of the excess lines as well as the HLINK command at the start is also
required.

Linking the file with the following command produces the f_sym.obj object and f_sym.map map
files.

HLINK < f_sym.lnk

On inspection of the UNUSED ADDRESS RANGES in the map file f_sym.map (this file is overwritten
later, but has been included as forg_sym.map for reference here), we can determine the amount of
RAM that the fixed code requires for all the memory banks. Our example shows that only BANK0 is
used. The default memory range available in bank 0 is from 1Ch to FFh. (Look at the -ABANK0 linker
option in this file.) The unused BANK0 memory extended from 28h to C5h (see the UNUSED
ADDRESS RANGES in this file). This means that the address range 1Ch to 27h was used (Ch locations)
and from C6h to FFh was used (3Ah locations). The total memory required is 46h locations. We will
now adjust the linker options so that the linker will allocate all the memory at the lower end of the
available bank 0 range from 1Ch to 61h. (1Ch + 46h - 1 = 61h) The upper range of this memory will
then be available for the replaceable code. The memory allocated to the internal code is changed in the
linker file to reflect this. The new bank 0 memory range available to the linker is specified by the
options:

-ABANK0=001Ch-0061h

The next step is to localize certain global symbols from the symbol-only object file. The reason for this
is that we want to linker to re-link the code/data associated with these symbols rather than using the
symbols that were defined in the fixed code. Localizing them tells the linker that it cannot use any
16

Split code for PICs

 1
globally defined symbols that it may have seen and that it will have to search for a new definition. For
example, the copy_data routine is already defined by the internal code to initialize variables that that
code uses. But this code will be using the address range applicable for the fixed code and does not know
about variables defined elsewhere. To force the linker to link in another copy_data routine specific for
the replaceable code we essentially undefine the symbol by localizing it. If there are any routines defined
in the fixed code that you do not want the external code to use then include their name here. You must
then ensure that you provide the definition for the routines in the external code. The XSTRIP utility can
be used as shown.

XSTRIP -start,_exit,intlevel0,intlevel1,copy_data,clear_ram,
copy_bank0,clear_bank0 f_sym.obj

0.1.3 Creating the Absolute Object File for the Fixed Code

Start by copying the symbol-only linker file and renaming it, in our example it has been copied and
renamed to f_abs.lnk. The -F and -I options are removed. The map, object and symbol files have
been changed to f_abs.map, f_abs.obj and f_abs.sym, respectively (i.e. options -Mf_abs.map -
Of_abs.obj -H+f_abs.sym).

This file is then used to link the relevant output files.

HLINK < f_abs.lnk

0.1.4 Creating a Modified Run-Time File

As described in the PICC Manual, copy the picrt66x.as and sfr.h files from the SOURCES
subdirectory of your distribution. (You can rename the run-time file so that it is not confused with the
standard run-time module - in this case it has been renamed to extrt.as). Now, within this renamed
run-time file, replace all references to the symbol _main to the assembler name of the external main
function. In our example, the main function of the external code has been called ext_main(), hence all
references to _main would be replaced with _ext_main.

0.1.5 Creating the Absolute Object File for the External Memory

Copy and rename the linker file used for the absolute object file (in our example, the f_abs.lnk has
been copied and renamed to replace.lnk). The output map, object and symbol files are changed to
replace.map, replace.obj and replace.sym, respectively (i.e. options -Mreplace.map -
Oreplace.obj -H+replace.sym).

As the internal code only used the RAM in the addresses 001Ch - 0061h, we can allocate the remaining
addresses to the external code using the following linker option.

-ABANK0=0062h-00FFh

The ROM settings are changed so that only external memory is defined.
PIC Tutorials 17

 1

ed
s and

ce,

olute

sions

ELL

 As
-ACODE=4000h-5FFDh

The ROMDATA class is changed so that it only uses the external memory ROM space of 8000h - BFFFh.

-AROMDATA=8000h-BFFFh

Change the init psect’s address.

-pintcode=08h,powerup=00h,init=4100h,end_init,clrtxt

(Although this option places intcode and powerup at internal locations, there should be nothing plac
within either of these two psects by the external code.) Now, remove internal memory object file
replace them with the external memory object files. (The files removed were fixed.obj,
callgrph.obj - replaced by r_main.obj and r_ext.obj) The symbol-only fixed code object file is
added to the list (f_sym.obj). The modified run-time module is to replace the run-time object, hen
the reference to picrt714.obj is replaced with the extrt.obj file.

Finally, the psect isr10, which contains the external interrupt, needs to be positioned at the abs
address of 4200h. The following is added to the linker command.

-pisr10=4200h

This is then linked to produce the absolute object file for the external memory.

HLINK < replace.lnk

0.1.6 Creating HEX Files

The OBJTOHEX application is used to create HEX files from the absolute object files. The conver
are as follows.

For the internal code,

OBJTOHEX -I -16,2 f_abs.obj fixed.hex

For the external code

OBTOHEX -I -16,2 replace.obj replace.hex

 2.5.2.10 Creating COD Files for Debugging

The COD files are used for debugging on some emulators/simulators, e.g. MPLAB. The CROMW
utility is used.

CROMWELL -F -M -P17C756 fixed.hex f_abs.sym replace.hex replace.sym -ocod

This produces a fixed.cod file only. For this example, the MPLAB IDE was used to run the code.
the HEX files must be loaded into memory, it is recommended that a copy of the fixed.cod file is made
18

Split code for PICs

 1

ode is

s of RAM

s the

 objects
r
opposed

s, e.g.
en

t

h

ed and

 to
in the name of replace.cod so that it does not matter which HEX file is loaded first, as the COD files
exist for both HEX files.

0.1.7 Checking Results

Check the following by viewing the map files.

a) Ensure that the addresses of all the fixed code are in internal memory and that the addresses of RAM
symbols defined by the fixed code are within the RAM space allocated.

The PIC17C756’s internal memory is from 0h - 3FFFh and from the CODE class listing, all the c
within that range. (In our example, the code is listed in locations 00h-16h, 1EF1h-2011h.

b) Ensure that the addresses all the replaceable code are in external memory and the addresse
symbols are in the space allocated.

Viewing replace.map shows that the code is placed from address 4000h onwards, which i
external memory location. Note that all the psects linked into the ROMDATA class (e.g. cstrings and
idata_n psects) are placed at address 10000h. Although we specified that the linker place these
in the ROM space 8000h-BFFFh (-AROMDATA=8000h-BFFFh). This is due to the fact that the compile
can place two data bytes in each ROM word location. The address used to refer to ROM data (as
to code) is a byte address that is twice the corresponding word address.

c) Ensure that auto and parameters areas for each function are not at the same addres
?_ext_main is at 0064h and ?a_ext_main is at 0067h. If a function does not have parameters th
these addresses will be the same.

d) Ensure that functions that are active at the same time and have auto or parameter areas do no
overlap. e.g. The ext_main() routine calls the functions multiply() and strcat() (in addition to
others). The auto and parameter addresses for ext_main() and multiply() do not overlap, nor do
the addresses for ext_main() and strcat(). However, note that ?_multiply and ?_strcat are the
same since multiply() never calls strcat() and vice versa.

e) Ensure that the values assigned to the entry routine and external ISRs are as specified.

Looking through the replace.map file, the _start and _ext_isr10 routines are at 4100h and 4200
respectively.

f) Ensure that symbols that are shared are have the same value in the map file for both the fix
replaceable code.

In our example, this would be the function dosomething(). The symbol _dosomething is at 005C in
the f_abs.map file as is in the replace.map file. The same can be said about the library calls
strlen(), strlen(), inc() and twice().
PIC Tutorials 19

 1
 g) Note in replace.map that some symbols in the Symbol table are defined in a psect called (abs).
This indicates that the symbol already had a value assigned to it when linking was performed.
Essentially this means that the symbol was defined in the fixed code and was present in the symbol-only
object file that was linked with the replaceable code. Check to ensure that routines or symbols that
should be referenced in the replaceable code are not using any similar definitions in the fixed code.
20

	0.1 Split code for PICs
	0.1.1 Creating the Object Files
	0.1.2 Creating the Symbol-Only Object File
	0.1.3 Creating the Absolute Object File for the Fixed Code
	0.1.4 Creating a Modified Run-Time File
	0.1.5 Creating the Absolute Object File for the External Memory
	0.1.6 Creating HEX Files
	0.1.7 Checking Results

